Philosophie

Les mathématiques ont longtemps été une partie de la philosophie. Elles étaient soumises à la logique d’Aristote. Tout le monde était alors d’avis que les mathématiques ne servaient qu’à la mesure de la surface et du volume des objets (géométrie) ou encore à ce que l’on appelait alors les « arts mécaniques ».

René Descartes
descartes
C’est Descartes qui a commencé à briser le joug de la philosophie et proposé une méthode différente pour « penser » les mathématiques. Ce fut « Le discours de la méthode », publié en 1637, sans nom d’auteur.
Mais quelle était au juste cette fameuse méthode. La voici, en quatre préceptes, comme l’a écrite Descartes :- le premier était de ne recevoir jamais aucune chose pour vraie que je ne la connusse évidemment être telle;

– le second, de diviser chacune des difficultés que j’examinerais en autant de parcelles qu’il se pourrait;

– le troisième, de conduire par ordre mes pensées, en commençant par les objets les plus simples etles plus aisées à connaître, pour monter peu à peu, comme par degré, jusqu’à la connaissance des plus composés;

– et le dernier, de faire partout des dénombrements si entiers et des revues si générales, que je fusse assuré de ne rien omettre.

Même si la méthode de Descartes n’a pas été adoptée d’amblée par tous les mathématiciens, son empreinte sur le développement subséquent de la science fut déterminant.

Kurt Gödel
Godel
La question de la véracité et de la cohérence des déductions qu’ils faisaient a toujours préoccupé les mathématiciens. C’était particulièrement vrai au début du XXe siècle. Les Russel, Whitehead, Hilbert et autres, ont tenté de déduire l’ensemble de toutes les mathématiques à partir de la logique et de s’assurer que le système était non-contradictoire.En 1931, Gödel publia un article dans lequel il démontrait qu’aucun système axiomatique basé uniquement sur la logique ne pourrait jamais générer tous les théorèmes de la théorie des nombres. C’était un coup dur pour ceux qui croyaient que les mathématiques et la logique ne formaient qu’une seule et même science.

C’était le désormais célèbre Théorème d’incomplétude de Gödel. Cela veut-il dire que le système mathématique n’est pas cohérent ou qu’il n’est pas complet ? Pas du tout, mais cela veut dire qu’on ne pourra jamais le démontrer !

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *